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Abstract-The existing method of derivation of the magnitude of simple shear 6;) in flexural slip and flexural flow 
folds has been extended to the general case of folds in which the radius of curvature varies continuously over a fold 
arc of any shape. In agreement with earlier conclusions, the present analysis shows that y is equal to the dip angle (0) 
measured in radians. This result is applied to the situation in which an early fold (F,) on a passively behaving layer is 
refolded by flexural flow on the axial planar cleavage of F,. Both the theory and the folding experiments with paper 
stacks show that the F2 folds on the passively behaving layers show an unusual pattern of thickness variation, with 
the orthogonal thickness continuously increasing or continuously decreasing from one limb to the other without a 
maximum or a minimum at the hinge. Flexural slip or flexural flow folds may be identified from this characteristic 
pattern of thickness variation. The asymmetry of the smaller F1 folds on the layering is strongly modified by later 
folding on the axial planar cleavage. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

The refolding of an earlier generation of folds by a later 
generation of shear folds has been analysed by O’Driscoll 
(1962), Ramsay (1967), Thiessen & Means (1980) and 
Thiessen (1986). Similarly, the development of a refold 
structure by superposed buckling has been described by 
several authors, e.g. Ghosh & Ramberg (1968), Skjernaa 
(1975), Ghosh et al. (1992, 1993). The present paper is 
concerned with the modification of the fold shape and 
layer-thickness when an earlier generation of folds (say, 
F1) is refolded by flexural flow or flexural slip. In the 
model of shear folding, the layer behaves in a passive 
manner and the folding occurs in response to hetero- 
geneous simple shear at an angle to the layering. In the 
present model of refolding by flexural flow, the stack of 
slip surfaces is deformed to parallel folds but the 
magnitude of simple shear displacement varies along a 
single surface. At each point of this folded surface the 
layer-segment is externally rotated but the angle between 
it and the intersecting slip surfaces changes entirely in 
response to the simple shear displacement parallel to the 
slip surfaces. 

The distinction between flexural slip and flexural flow 
folds depends on the scale of observation. In practice, the 
structure can be regarded as a flexural flow fold if the 
surfaces along which the simple shear movement takes 
place are very closely spaced so that a marker line oblique 
to these surfaces appears as a more or less continuous line 
after its deformation. Folding of penetrative cleavage 
surfaces may give rise to flexural flow folds. If there is a 
passively behaving colour banding, such as bedding in 
slates, oblique to the cleavage, its orthogonal thickness 
will vary in accordance with the magnitude and sense of 
simple shear. The resulting fold geometry may be quite 

complex. In the following discussion the surfaces along 
which flexural slip or flexural flow takes place will be 
designated S, and the bounding surfaces of the passive 
layers will be designated S,,. 

MAGNITUDE OF SIMPLE SHEAR IN FLEXURAL 
FLOW 

For any analysis of flexural flow or flexural slip folds it 
is essential to know the magnitude of simple shear at any 
point within the fold. At first glance it may seem difficult 
to obtain this crucial information. Fortunately, as shown 
by Ramsay (1967, p. 393; see also Ramsay & Huber, 
1987, p. 456, fig. 21.4), this information is readily 
available from the fold shape alone. 

Flexural slip and flexural flow folds have been 
discussed in detail by Ramsay (1967) and by Ramsay & 
Huber (1987). Ramsay considered a folded surface made 
up of a number of discrete circular arcs of radii rl, ~2 etc., 
which make angles hl, h2 etc. at their respective centres. 
He showed that at any point, say at the end of the third 
consecutive arc from the hinge point, the simple shear 
strain (y) will be a sum of these angles (dl + & + &) 
measured in radians. This unexpectedly simple result can 
be utilized to determine the strain at any point in a 
flexural flow fold. The result is of such importance that it 
is worthwhile to check whether the same solution can be 
derived for a fold-arc without a discontinuity in the dip 
angle and with continuous variation of the curvature. 

The following derivation is valid for folds of any shape. 
Only a quarter wave of a fold is considered in which the 
dip angle 8 is zero at the hinge point and increases 
continuously away from it. Let us consider two parallel 
fold arcs Cl and C2 at a constant distance t from each 
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Fig. 1. Simple shear displacement parallel to slip surfaces of a flexural 
slip fold. Cr and CJ are two fold arcs at a distance t from each other. P is 
a current point on Ct. PQ is normal to C, and C2. The arc-length 
distance of P from the hinge point is sO and the arc-length distance of Q 
from the hinge point of C? is .st. R is a point on C2 such that its arc-length 
distance from the hinge point of Cz is so. Hence RQ is the magnitude of 

slip on C2. 

other. Let the lower curve Ci (Fig. 1) be represented by 
the function y = a(x) and the upper curve C2 be 
represented by the function y = b(x). For each of these 
curves the arc-length s measured from the hinge point is a 
function of x and the dip angle 6 is also a function of x. 
Hence, for each of these curves s is a function of 0, say, 

s =f’(@ for Ci , 

s = g(8) for Cz. (1) 

Since the curves Ci and Cz will not have any straight 
line portion in them, the correspondence between s and 0 
will be one to one for both of them and therefore, for both 
Ci and Cz, 8 is also a function of s. Let 

8 = q(s) for Ci, 

0 = I+!+) for Cl. (2) 

For any dip angle 9, the curvature at any point P on C1 
(Fig. 1) is (o’(s) = $cp(s) and the curvature at the 
corresponding point Q on C2 is v?‘(s) = $ +(s), PQ being 
a normal to both Ci and CZ: 

d(s) = ;, 

@‘(s) = -& 1 (3) 

where t is the orthogonal thickness and r is the radius of 
curvature of Ci at P. By a well-known theorem of 
derivatives, we have 

wheref’(8) = &f(e) and g’(0) = &g(e), so that 

.f’(Q) = y, 

and 

g’(8) = r + t (5) 

g’(0) -f’(0) = t. (6) 

After integration we find 

g(B) -f(O) = to, (7) 

noting that at the hinge point 8 = 0, the amount of 
flexural slip, g(0) - f(0) = 0, or. 

St - so 
---=I9 

t (8) 

where .st and so are the arc-lengths of C2 and Ci at Q and P 
respectively. 

But 

Therefore, 

limt_o v = y. 

y = 8, (9) 

in agreement with Ramsay’s conclusion. Thus, the 
magnitude of simple shear is equal to the dip angle 
measured in radians. The result is of considerable 
importance because it allows determination of the strain 
at any point in a flexural flow fold. It also sets an upper 
limit of the magnitude of simple shear. Since most natural 
folds are not fan folds the dip angle at the point of 
inflection of a fold cannot exceed 90” and the maximum 
value of simple shear cannot be greater than 4 or 1.57. 

VARIATION OF ORTHOGONAL THICKNESS OF 
A LAYER OBLIQUE TO SURFACES OF 

FLEXURAL FLOW 

In the following analysis it is assumed that flexural flow 
folding has taken place on a set of fine penetrative S 
surfaces S,, say a cleavage. It is also assumed that there is 
no hinge migration during the folding of S,. There was 
before the folding, a layer of initial thickness t*. The 
layering St, may be a bedding or colour banding. The 
initial angle between S, and Si, is (b (Fig. 2a). After 
folding, the angle 4 changes to 4’ by simple shear parallel 
to S,. Depending on the sense of simple shear, 4’ may be 
smaller or larger than 4. In the flexural flow fold, the 
orientation of S, at the hinge zone is taken as horizontal 
and the dip angle of S, at any point is designated 6. The 
dip angle of the folded Sb is designated ~1. Then 

a=6+@’ (10) 

(Fig. 2b). Since cot& = cot4 + y, or by eqn (9), 

cot@’ = cot4 f 8, (11) 
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(b) 

(cl 
Fig. 2. (a) A layer Sb. with initial thickness f*, at an angle 4 to the slip 
surfaces S,. (b) S, forms a flexural flow fold. The tangent at its hinge 
point is horizontal. B is the dip angle of S,. The dip angle of SI,, with 
reference to the horizontal line, is a. The angle between the tangents to 
S, and Sb at R is qY. The dip isogons of S, and St, at P and R are 
coincident, although for different values of 0 and a. The orthogonal 
thickness of the layer at R is t,. (c)Simple shear dispiacement parallel to 
S, rotates Sb so that its angle with S, changes from 4 to $‘. There is a 

corresponding change in the orthogonal thickness from t to 1.. 

we can express the dip angle CI of Sr, at any point by the 
initial angle 4 and the dip angle (6) of S,: 

cr=@+tan-’ 
1 ( > co@+8 . 

(12) 

The sign convention for measuring a and 0 is shown in 
Fig. 3. 

Equation (12) shows that at the hinge point of the fold 
on S,, i.e. at the point where 8 = 0, the dip angle TV of the 
layering # 0. Since the simple shear vanishes at this hinge 
point, 4 remains unchanged, and a = 4. At the hinge 
point of the fold on Sb, c( = 0. &, the value of 8 at this 
hinge point, as obtained from eqn. (12) is 

eh = -tan-‘(cot;+ J (13) 

or, 

SG 18:8-G 

oh + cot& = --cot& (14) 

Fig. 3. Sign convention for 0 and a. 

Figure 4 shows the variation of 6$, with 4. 
If t* is the original thickness of the layer and t, is the 

thickness of the layer after deformation, it is evident from 
Fig. 2(c) that, 

t, sin# 

-==5 t* (15) 

where to is the value oft, for LY = 0. 
To plot the C&/U curves for a particular value of 4, the 

following procedure can be adopted. For different values 
of 0, a is first calculated from eqn (12). For each of these 

60 - 
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Fig. 4. Variation of et, with 4. 
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CLass lb 

-30 0 30 

Fig. 5. f&/a plots for C#J = f 15” and +30”. 

values of 8 and the corresponding value of ~1, 4 is then 
determined from eqn (10) or (11). tJt* can be calculated 
from eqn. (15). To determine to/t*, &, is first determined 
from the graph of Fig. 4. to/t* is then determined by 
following the same procedure as for t,/t*, but for c( = 0. 
Finally, t& is calculated from eqn (16). 

Figure 5 shows the variation oft& with a for 4 = ) 15” 
and 30”. The figure shows that the geometry of the fold is 
quite different from any of the standard categories of fold 

classification. t& is neither a maximum nor a minimum at 
the fold hinge; it continuously increases or continuously 
decreases from one limb to the other across the fold 
hinge. This is the characteristic pattern of thickness 
variation for all such folds with any initial value of 4. 
The geometry of the folds can also be represented by 
plotting tJt* against 0 (Fig. 6). At the hinge of the fold on 
cleavage where 0 = 0, 4’ = C$ and t, is equal to the initial 
thickness (t*) of the layer. 

0.2 
0 

I I 1 I I I I I I I 1 I I I I 1 

-80 -60 -40 -20 0 20 40 60 80 

Fig. 6. Plot of t,/t* against 0 for # = - 30”. At the hinge point of the fold on S,, i.e. at 0 = 0, the orthogonal thickness f, is 
equal to the original thickness I*. 
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The representation of the fold shape in transverse 
profile, by the variation of the orthogonal thickness with 
the dip angle (Ramsay 1967), depends on the choice of 
the line with respect to which the dip angle is measured. 
For simple folds the tangent at the hinge point is taken as 
the reference line. At this point the dip isogon is 
perpendicular to the tangent. The parallel flexural flow 
fold on S, represents such a simple situation in which the 
reference line 8 = 0 can be chosen as the tangent to S, at 
the hinge point. However, if we choose a line parallel to 
this line as the datum for measuring a for the fold of S,, 
we find that the dip isogon of the layer at a = 0 is not at a 
right angle to the tangent at this point (Fig. 7). For some 
folds, as suggested by Hudleston (1973), it is convenient 
to choose the reference line as the tangent to the folded 
surface at that point where the orthogonal thickness is a 
maximum and the dip isogon is normal to the folded 
surface. However, for the present case, this method is also 
inapplicable because the orthogonal thickness does not 
have a stationary value (either a maximum or a 
minimum) anywhere on the fold; the orthogonal thick- 
ness continuously increases from one limb to the other. 
Nevertheless, the shape of fold on the profile plane can be 
represented very well if, as suggested by Gray & Durney 
(1979) the variation of t’ is shown by a continuous curve 
from one limb to the other (Fig. 5) and if the reference 
line tangential to Sb is parallel to a line 0 = 0. 

Consider a line normal to S, at any point of the fold. 
The dip angle 0 of S, is the same at all points of this line. 
Since, by eqn. (9), 0 = y, the angle (4’) between Sb and S, 
is also the same for each point along this line. Hence the 
dip isogon for Sb is coincident with the dip isogon for S,, 
although for different values of 8 and a. Thus, although 
the fold on St, does not belong to any of the standard 
categories (lA, lB, lC, 2 or 3) its convergent pattern of 
dip isogons is identical to that of the parallel fold on S, 
(Fig. 8). 

GEOMETRY OF SUPERPOSED FOLDS IN 
OBLIQUE LAYERS 

Refolding by flexural flow is associated with the 
thickness-modification of passively behaving layers obli- 

Fig. 7. At I = 0, the dip isogon is not at a right angle to the tangent 
to Sb. 

b 

Fig. 8. Convergent dip isogons for (a) S, and (b) Sb. 

que to the slip surfaces. The modified fold shapes can be 
studied from paper stack models on the edge of which the 
first fold profile is drawn. In Fig. 9(a) the profile of a non- 
isoclinal straight limbed fold is drawn so that its axial 
trace is parallel to the traces of the paper sheets. The 
surfaces of the sheets act as slip surfaces S, whereas the 
fold drawn on the edge represents the traces of Si,. 
Consider a non-isoclinal fold (Fi) with an axial planar 
S, (Fig. 9a). The S, surfaces are folded coaxially (F2) by 
flexural flow (Figs. 9b & c and 10). Each of the two limbs, 
A and B (as in Fig. 1 l), of Fi shows a continuous increase 
or a continuous decrease in orthogonal thickness from 
one limb of F2 to the other. On one limb of Fz, the 
thickness of A increases whereas the thickness of B 
decreases from the limb to the hinge. The F2 axial surface 
traces on A and B show a sideways shift (Ramsay 1967, 
p. 509) with respect to each other and the fold hinges lie 
on opposite sides of the axial trace of the F2 fold on S, 
(Fig. 11). The sense of shifting of the Fz axial surface 
traces is the same as in superposed shear folds (Ramsay 
1967, p. 509) as well as in the majority of superposed 
buckle folds (Ghosh 1995). In areas of superposed 
folding the noses of early folds (Fi) are often difficult to 
locate. The side-stepping of the axial surface traces of the 
later folds (Fz) in the outcrops enables us to locate the F, 
axial trace. From the sense of offset of the Fl axial traces 
one can also determine on which side the Fi fold closure 
is expected to lie (Ghosh, 1995). If F2 is a flexural slip or a 
flexural flow fold on the axial plane cleavage of Fi and if 
the limbs of Fi have deformed in a passive manner, the 
axial surface trace of Fi can also be located from the 
dissimilar patterns of thickness variation on any one limb 
of Fz on either side of a line along which the Fi axial trace 
should lie (Fig. 12). 
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Fig. I 1. The hinges and axial surface traces of the F? folds on Sb show 
an offset. The axial traces are not parallel. 

There may be smaller asymmetric S- and Z-folds 
congruous with the larger Fi (Fig. 13a). During flexural 
flow folding on the slip surfaces, the shapes of these folds 
are considerably modified. During the development of an 
F2 antiform on S,, the simple shear is dextral on the left 
limb and sinistral on the right limb. A layer segment 
steeper than S, and dipping in the same direction is 
extended and thinned on both limbs of the fold on S,. 

Similarly, a layer segment St, dipping at a smaller angle 
than S, is shortened and thickened. The longer limbs of 
the Z-folds on the left side of F2 (Fig. 13b) are therefore 
shortened and thickened (Fig. 10a & b). Consequently, 
the initial asymmetry of the folds changes in the sense 
that the ratio of short and long limbs comes closer to 
unity and there is also an increase in angle between the 
axial plane and the enveloping surface. On the other 
hand, the asymmetry of the folds is accentuated by the 
thickness contrast between the two limbs, because up to a 
certain stage of their development, the shorter limbs of 
the initial Z-folds are greatly thinned with respect to the 
longer limbs (Fig. 10a & b). When the same set of Z-folds 
are rotated on the right hand side of an antiformal F2 
(Fig. 13b), the folds continuously become more asym- 
metric in the sense that the initial longer limbs of the folds 
are further lengthened and the initial shorter limbs are 
shortened (Fig. 10~). The angle between the enveloping 

----_____ 

a 

Fig. 13. (a) Z and S folds on the two limbs A and B of a larger Fr fold. 
The dashed lines are traces of an axial planar cleavage (S,). (b) Two 
domains of the structure on the left and the right limbs of Fz. The arrows 
indicate the sense of simple shear displacements on S,. The original 
shapes of the Z folds of limb A are retained in this figure. This shape will 

be modified by flexural slip as in Fig. 10 (b) & (c). 

surface and the axial plane also decreases to a consider- 
able extent. The initial asymmetry of the S-folds on limb 
B of Fi is modified in an opposite manner. The initial 
shape and asymmetry of the smaller folds is least 
modified at the hinge of the F2 fold on cleavage, although 
the axial surfaces of the smaller folds become curved. 
Evidently, the morphology of the folds would deviate 
further from that of buckling folds if there are three 
generations of coaxial folds, with flexural flow folding 
taking place on the axial plane cleavages of the second 
generation folds (Fig. 10 d-f). 

It has been assumed in the foregoing analysis that the 
folds on S, and Sb are coaxial. If the axis of the second 
generation flexural flow folds (F,,) on the axial planar 
cleavage of a first generation fold (Fi) is at an angle to the 
Fi axis, the axes of the second generation folds on the 
bedding (FZb) will be differently oriented on the two limbs 
of Fi. Neither of them will be parallel to the axis of Fzc. 
Since the cleavage is axial plannar to Fi, the bedding- 
cleavage intersection lineation is parallel to the Fi axis. 
On the folded cleavage surfaces, the traces of bedding will 
maintain a constant angle with the Fzc axis (Fig. 14); the 
lineation will be straightened out when the fold on the 
cleavage is unrolled. On the other hand, on any 
cylindrical segment of a Fib fold the bedding-cleavage 
intersection lineation will not maintain a constant angle 
with the axis of FZb (Fig. 14). When the fold is unrolled 
the lineation will appear curved. 

F, axial 
surface trace 

Fig. 12. On any one limb of the F2 fold the layer-thickness shows 
different patterns of variation on either side of the Fr axial trace. Where 
the Fr fold closures are unexposed, the Fr axial trace may be located 

from such patterns of thickness variation. 

SUMMARY AND CONCLUSIONS 

The simple shear (y) at any point of a flexural flow fold 
on S, is equal to the dip angle (8) at that point, i.e. the 
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Fig. 9. (a) Paper stack model with profile of F, fold drawn on the vertical edge. The traces of the sheets are parallel to the axial 
surface trace of F,. (b) and (c)Two stages offlexural slip folding of the paper stack shown in (a). (d) Paper stack model with the 

profile of asymmetric Z-folds drawn on the edge. 

1085 



S. K. GHOSH 

Fig. 10. (a) Deformation of Z-folds shown in Fig. 9(d). Note the different manner m which the initial asymmetry of the folds 
has changed on the two limbs ofthe flexural slip fold. (b) Flexural slip folding of Z-folds shown in Fig. 9(d). The sense of simple 
shear is the same as on the left limb ofan antiformal fold. (c) Same as in (b) but with sense ofsimple shear as on right limb of an 
antiformal fold. (d) Undeformed paper stack with a two-dlmensional type 3 Interference pattern drawn on the edge. with the 
traces of the paper sheet> parallel to axial traces of F2 folds drawn on the edge. (e) and (f) Two stages of deformation of the 

hook-shaped pattern of(d) by Rexural slip folding of the paper stack. 
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Fig. 14. Lower hemisphere stereographic projection showing initial 
horizontal orientation of S, (solid line) and an intersecting layer Sb (dot- 
and-dash line) with an intersection lineation Li parallel to the F, axis. 
The axes of the second generation folds on S, and St,, Fzc and FIN, are 
not parallel. Continuous great circles are limbs of Flc. Dashed great 
circles are limbs of FZb. Li is externally rotated around Fzc. However, 

the angle between Fzb and the rotated Li does not remain constant. 

angle between S, at that point and at the hinge point of 
the fold. This important relationship, valid for folds of 
any shape in which the dip angle continuously increases 
from the hinge to the inflection point, enables us to 
predict the variation in orthogonal thickness of an 
oblique passively behaving layer folded in response to 
the flexural flow on the slip surfaces. Coaxial refolding of 
such layers produces an uncommon geometry, with the 
orthogonal thickness of the later folds continuously 
increasing or continuously decreasing from one limb to 
the other over the fold hinge and with no stationary value 
at any point. Although the thickness variation of the 
folds does not conform to any of the standard classes, 
their converging pattern of dip isogon is similar to that of 
the parallel fold on the slip surfaces. The refolded smaller 
folds on the passively behaving layers also show a 
complex pattern of thickness variation and a strong 
modification of their initial asymmetry. A comparison of 
the thickness variation pattern of naturally occurring 
superposed folds with that of the theoretically derived 
pattern will enable us to identify flexural flow folds. 

Folding of penetrative cleavage surfaces of slates and 
schists is fairly common. Depending on whether or not it 
behaves in a passive manner, a layer at an angle to the 
cleavage may or may not show the pattern of thickness 
variation in accordance with the model described above. 
Moreover, the folding of closely spaced well-developed 

cleavage surfaces may not conform with the idealised 
model of flexural slip. The nature of the deviation of the 
pattern from that of the theoretical model may then give 
us valuable information about the mechanism of folding 
for the folds on both the layering and the cleavage. This 
problem is, however, much more complex, and is outside 
the scope of this paper. If a set of layers (SrJ oblique to the 
cleavage planes (S,) does not behave in a passive manner, 
the folding of each of Sb and S, may be influenced by that 
of the other. The folding of the layers will not only be 
influenced by the mechanical property of the layers but 
also by the mechanical property of the cleavage. 
Similarly, the simple shear displacements on the cleavage 
surfaces may be modified by the active folding of the 
intersecting layers. 

Finally, the theoretical model considered in this paper 
assumes a uniform thickness of the Fi limbs before the 
folding of their axial planar cleavage. If the initial 
thickness was non-uniform, the thickness variation of 
the layers will have a more complex pattern over the F2 
folds. However, since the magnitude of simple shear (y) is 
known at every point of the fold, the initial thickness t* 
and the initial angle 4 can be determined for each value of 
9, so that the initial profile shape of the Fi fold (not 
necessarily with straight limbs of uniform thickness) can 
be reconstructed. 
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